Defining the "dose" of altitude training: how high to live for optimal sea level performance enhancement.
نویسندگان
چکیده
Chronic living at altitudes of ∼2,500 m causes consistent hematological acclimatization in most, but not all, groups of athletes; however, responses of erythropoietin (EPO) and red cell mass to a given altitude show substantial individual variability. We hypothesized that athletes living at higher altitudes would experience greater improvements in sea level performance, secondary to greater hematological acclimatization, compared with athletes living at lower altitudes. After 4 wk of group sea level training and testing, 48 collegiate distance runners (32 men, 16 women) were randomly assigned to one of four living altitudes (1,780, 2,085, 2,454, or 2,800 m). All athletes trained together daily at a common altitude from 1,250-3,000 m following a modified live high-train low model. Subjects completed hematological, metabolic, and performance measures at sea level, before and after altitude training; EPO was assessed at various time points while at altitude. On return from altitude, 3,000-m time trial performance was significantly improved in groups living at the middle two altitudes (2,085 and 2,454 m), but not in groups living at 1,780 and 2,800 m. EPO was significantly higher in all groups at 24 and 48 h, but returned to sea level baseline after 72 h in the 1,780-m group. Erythrocyte volume was significantly higher within all groups after return from altitude and was not different between groups. These data suggest that, when completing a 4-wk altitude camp following the live high-train low model, there is a target altitude between 2,000 and 2,500 m that produces an optimal acclimatization response for sea level performance.
منابع مشابه
Combining hypoxic methods for peak performance.
New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure du...
متن کاملDose ” of Altitude Training : How High to Live for Optimal
23 Chronic living at altitudes ~2500m causes consistent hematological acclimatization in most, but 24 not all, groups of athletes; however, responses of erythropoietin (EPO) and red cell mass to a 25 given altitude show substantial individual variability. We hypothesized that athletes living at 26 higher altitudes would experience greater improvements in sea level performance, secondary to 27 g...
متن کاملLive high + train low: thinking in terms of an optimal hypoxic dose.
"Live high-train low" (LH+TL) altitude training allows athletes to "live high" for the purpose of facilitating altitude acclimatization, as characterized by a significant and sustained increase in endogenous erythropoietin and subsequent increase in erythrocyte volume, while simultaneously enabling them to "train low" for the purpose of replicating sea-level training intensity and oxygen flux, ...
متن کاملCould altitude training benefit team-sport athletes?
INTRODUCTION Following the dominance of altitude acclimatised athletes during the 1968 Olympic Games held in Mexico City (2400 m), and early anecdotal training experiments in the USA in the 1970s, altitude (hypoxic) training has become very popular among individual endurance athletes including marathon runners, cyclists, swimmers and triathletes. Altitude training is used to further enhance exe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 116 6 شماره
صفحات -
تاریخ انتشار 2014